Syndicate content

Archive - Dec 19, 2009

Date
  • All
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

Peptide from Ancient Organism May Thwart Multi-Resistant Pathogens

A discovery made while investigating the ancient multicellular organism Hydra magnipapillata has revealed a new antimicrobial peptide that shows significant activity against a variety of bacteria, including multi-resistant human strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Once commonly thought of as a hospital-acquired infection, MRSA has now spread to the community (now known as community-acquired or CA-MRSA) and is infecting previously healthy young people who have not been recently hospitalized or undergone a medical procedure. Past research has proven that ancient organisms are well equipped at preventing infectious pathogens from entering the body and given the desperate need for new drug targets, further exploration of these organisms is warranted. MRSA has already developed resistance to CA-MRSA human antimicrobial peptides and prior studies have shown antibacterial immune responses in the simple metazoan Hydra magnipapillata to include bactericidal peptides with novel structural features and modes of action. In the current study, researchers identified the antimicrobial peptide arminin 1a from Hydra and found that it exhibited significant and wide-spread activity against bacteria including MRSA and enterococci, a common cause of hospital-acquired infections that is also drug-resistant. Further observations revealed that bacteria are killed when the bacterial cell wall is disrupted and that the antibacterial activity of arminin 1a is not affected by exposure to salt in human blood. Finally, researchers determined that arminin 1a does not share any ancestry with any known antimicrobial peptides.