Syndicate content

Archive - Sep 3, 2009

Date

Addiction Gene Identified in Population Group

Researchers at the Yale University School of Public Health and Princeton University have identified a gene variant that is associated with addictive behaviors in white women of European origin. Genome-wide association studies revealed that a SNP variant of the PKNOX2 gene, located on chromosome 11, is associated, in these women, with multiple (two or more) dependencies involving nicotine, alcohol, marijuana, cocaine, opiates, and other drugs. While genes on other chromosomes have previously been associated with alcoholism and drug abuse in prior studies, this is believed to be the first time that the PKNOX2 gene has been associated with addiction in humans, said Dr. Heping Zhang, the paper’s senior author. The gene identified by the researchers had previously been associated with addictive behavior in mice. “This information can be used to design preventive and/or treatment strategies for addiction by controlling the environment exposure in the targeted group and/or by exploring and developing medications that modify the expression of the gene,” Dr. Zhang said. The researchers emphasized that their findings indicate that the associations are not as significant when individual outcomes for addiction are considered, underscoring the importance of considering multiple addiction types. The work was reported on August 31 in the early online edition of PNAS. [Press release] [PNAS abstract]

Epigenetic Changes Linked to Type 2 Diabetes

A research group at the Karolinska Institute in Sweden has shown that a key gene (PGC-1alpha) in the muscle cells of type 2 diabetics is chemically modified through DNA methylation. The scientists found that the gene was hypermethylated and had reduced expression in muscle cells taken from patients with early-onset type 2 diabetes. PGC-1alpha controls other genes that regulate the metabolism of glucose by the cell. DNA methylation is a form of epigenetic regulation, a process involving chemical modifications that are imposed externally on genes and that alter their activity without any change to the underlying DNA sequence. "This type of epigenetic modification might be the link that explains how environmental factors have a long-term influence on the development of type 2 diabetes," said Dr. Juleen Zierath, who led the study. "It remains to be seen whether the DNA methylation of this gene can be affected by, say, dietary factors." This work was published in the September 2 edition of Cell Metabolism. [Press release] [Cell Metabolism abstract]