Syndicate content

Archive - Feb 18, 2010

Date

Additional Drug Reduces Lesions in Relapsing Multiple Sclerosis

An international team of researchers has found that adding a humanized monoclonal antibody called daclizumab to standard treatment reduces the number of new or enlarged brain lesions in patients with relapsing multiple sclerosis (MS). Daclizumab is specific for CD25, a protein that is expressed on activated T cells, and binding of daclizumab to CD25 results in selective inhibition of these activated T cells. Daclizumab treatment has been studied in patients with human autoimmune conditions, such as MS, that are characterized by abnormal T-cell responses. "Previous research has shown that treatment with daclizumab reduced multiple sclerosis disease activity," said Dr. John W. Rose, professor of neurology at the University of Utah School of Medicine, and senior author on the current article. "Our work in the CHOICE trial [a Phase 2, randomized, double-blinded, placebo-controlled clinical study] shows that daclizumab significantly reduces MS lesion formation in people with active relapsing disease." In addition to finding that add-on treatment with high-dose daclizumab resulted in a significantly lower number of new or enlarged MS lesions, the researchers found that patients treated with either high- or low-dose daclizumab had a seven to eight times higher number of immune cells called CD56bright natural killer cells (NK cells). Previous research has shown that untreated MS patients have lower numbers of these NK cells than healthy individuals. "Several lines of evidence point to a potential function for CD56bright natural killer cells in regulating the immune system," explained Dr. Rose.

Genome-Based Blood Tests May Usher in Personalized Medicine for Cancer

Data from the whole-genome sequencing of tumors from individual cancer patients may be used to develop individualized blood tests that can help physicians tailor treatments to the individual patient, according to results reported by researchers from Johns Hopkins and Life Technologies. The genome-based blood tests, believed to be the first of their kind, may be used to monitor tumor levels after therapy and determine cancer recurrence. This ground-breaking work may help bring the age of personalized medicine right to the cancer patient’s bedside. The sequencing in this project was carried out using the SOLiD next-generation sequencing platform (photo) from Life Technologies."We believe this is the first application of newer generations of whole-genome sequencing that could be clinically useful for cancer patients," says Dr. Victor Velculescu, co-director of the cancer biology program at Johns Hopkins and senior author of the report. "Using this approach, we can develop biomarkers for potentially any cancer patient." In their study, the scientists scanned the genomes of patients' tumors looking for alterations that they say most researchers have not been looking for—i.e., rearrangements of large chunks of DNA rather than changes in a single DNA letter among billions of others. Such DNA rearrangements are widely known to occur exclusively in cancer cells, not normal ones, making them ideal biomarkers for cancer. The researchers call their new approach Personalized Analysis of Rearranged Ends (PARE). "PARE uses genetic characteristics unique to the tumor to monitor disease progression. By exploiting rearrangements specific to the patient's tumor, we have developed a personalized approach for detection of residual disease," said lead author Rebecca Leary, a graduate student at the Johns Hopkins Kimmel Cancer Center.