Syndicate content

Archive - Feb 20, 2010


Gene Variations Associated with Endurance Running Ability

Scientists have shown that elite endurance runners are more likely to have particular variations (SNPs) of the NRF2 (nuclear respiratory factor 2) gene than are elite sprinters. Non-elite endurance runners were also more likely to have these NRF2 variations compared to sprinters, although the difference was not as pronounced. “These findings suggest that harboring this specific genotype might increase the probability of being an endurance athlete,” said lead author Dr. Nir Eynon of the Wingate Institute in Israel. The authors said that their data supports the notion that these specific gene variants might belong to a growing group of SNPs that are associated with endurance performance. The researchers investigated the NRF2 gene because previous studies had shown that it might play a role in endurance performance as it helps produce new mitochondria, a key cellular structure that produces energy. Earlier studies had also shown that the NRF2 gene can reduce the harmful effects of oxidation and inflammation, which increase during exercise. The researchers noted that their study shows an association between the gene variations and endurance, but does not establish a cause-effect relationship. Future studies are needed to unravel exactly what role the NRF2 gene plays in athletic performance. The current study is part of a larger body of research that is exploring the human genome and which aims to understand the genetic underpinnings of athletic performance. The results were published online in Physiological Genomics on December 22, 2009. The Sports Illustrated photo shows American marathon runner Bill Rodgers in 1979. [Press release] [Physiological Genomics abstract]

Panda Genome Sequenced—Reveals Clues to Bamboo Preference

Using next-generation sequencing technology, a Chinese-led international team has generated a draft genome sequence for the giant panda. The results provide clues to the panda’s predilection for a bamboo diet and demonstrate the feasibility of using next-generation sequencing technologies for accurate, cost-effective, and rapid de novo assembly of large eukaryotic genomes. The authors noted that insights gleaned from the giant panda genome sequence may aid conservation efforts for the endangered species. Although giant pandas are known for their largely bamboo diet, the researchers discovered that the animal actually lacks the genes necessary for compete digestion of this staple food source. Dr. Michael Bruford, an author of the report, noted that "the panda is a true bear and is a carnivore, so it possesses the genes necessary for being a meat-eater and yet its diet is almost exclusively herbivorous. This may suggest that it relies on microbes in its gut to digest bamboo rather than on anything in its genetic make-up. Taste is also important when it comes to the development of dietary habits and the sequencers discovered mutations in the panda's T1R1 gene which may affect its ability to taste meat, one possible explanation for why a potential carnivore would rely on a strict bamboo diet." The study found no signs of the low degree of variation that is usually linked to inbreeding and, in spite of the panda's low reproduction rate, the study identified nearly all the reproduction genes critical for mammalian gonad function and development. These results support the potential for successful survival despite the small population size of the species. Dr. Burford noted, "The panda is at high risk of extinction, with current estimates putting total population figures at less than 3,000.