Syndicate content

Archive - Jun 19, 2011

Date
  • All
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

PKD1 Gene Controls Development of Multiple Forms of Polycystic Disease

A single gene is central in the development of several forms of polycystic kidney and liver disease, Yale School of Medicine researchers report online on June 19, 2011, in Nature Genetics. The findings suggest manipulating activity of PKD1, the gene causing the most common form of polycystic kidney disease, may prove beneficial in reducing cysts in both liver and kidney. "We found that these conditions are not the result of an all or nothing phenomenon," said Dr. Stefan Somlo, the C.N.H. Long Professor of Medicine and Genetics and Chief, Section of Nephrology and senior author of the study. "The less PKD1 is expressed, the more cysts develop. Conversely, expressing more PKD1 can slow the process." The most common form of this condition is called autosomal dominant polycystic kidney disease (ADPKD), a condition passed on to children from one parent affected with the disease that is found in 600,000 people in the United States alone. Two genes, PKD1 and PKD2, are responsible for the onset of this condition. PKD patients also develop cysts of the liver and Somlo and colleagues had previously identified families with identical cysts found only in the liver. They found two different genes were responsible for this related condition. The researchers wanted to know how liver-only polycystic disease was related to ADPKD. In a series of experiments using both genetically engineered mouse models and biochemical studies, they found that the activity of only one of the four genes, PKD1, controlled cyst formation in the other forms of the disease. Experiments in mice showed that modulating dosage of PKD1 could slow disease progression.