Syndicate content

Archive - Jun 5, 2012

Date

Possible Cellular Bases for Link Between Aging and Increased Risk of Breast Cancer

It is well-known that the risks of breast cancer increase dramatically for women over the age of 50, but what takes place at the cellular level to cause this increase has been a mystery. Some answers and the possibility of preventative measures in the future are provided in a new study by researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). Dr. Mark LaBarge, a cell and molecular biologist in Berkeley Lab’s Life Sciences Division, led a study in which it was determined that aging causes an increase in multipotent progenitors – a type of adult stem cell believed to be at the root of many breast cancers – and a decrease in the myoepithelial cells that line the breast’s milk-producing luminal cells and are believed to serve as tumor suppressors. “This is a big step towards understanding the cellular basis for age-related vulnerability to breast cancer,” Dr. LaBarge says. “Now that we have defined some of the cell and molecular changes that occur in the epithelium during the aging process and we have the ability to assay them functionally, it should be possible to look for ways to avoid those states and perhaps even reverse them.” Dr. LaBarge is the corresponding author of a paper published online on May 2, 2012 in Cancer Research describing this study. Each year, more than 200,000 women in the United States are diagnosed with invasive breast cancer and about 75 percent of those women are older than 50. Age-related physiological changes, including endocrine profiles and alterations of the microenvironments surrounding breast cells, have been associated with increased cancer risks, but the underlying cellular mechanisms behind these changes and their links to cancer have not been explained.