Syndicate content

Archive - May 26, 2013

Date

Researchers ID Gene Mutations Possibly Associated with Sporadic Lou Gehrig's Disease

Researchers at the Stanford University School of Medicine and collaborators have identified mutations in several new genes that might be associated with the development of spontaneously occurring cases of the neurodegenerative disease known as amyotrophic lateral sclerosis, or ALS. Also known as Lou Gehrig's disease, the progressive, fatal condition, in which the motor neurons that control movement and breathing gradually cease to function, has no cure. Although researchers know of some mutations associated with inherited forms of ALS, the majority of patients have no family history of the disease, and there are few clues as to its cause. The Stanford researchers compared the DNA sequences of 47 patients who have the spontaneous form of the disease, known as sporadic ALS, with those of their unaffected parents. The goal was to identify new mutations that were present in the patient but not in either parent that may have contributed to disease development. Several suspects are mutations in genes that encode chromatin regulators - cellular proteins that govern how DNA is packed into the nucleus of a cell and how it is accessed when genes are expressed. Protein members of one these chromatin-regulatory complexes have recently been shown to play roles in normal development and some forms of cancer. "The more we know about the genetic causes of the disorder, the greater insight we will have as to possible therapeutic targets," said Aaron Gitler, Ph.D., associate professor of genetics. "Until now, researchers have primarily relied upon large families with many cases of inherited ALS and attempted to pinpoint genetic regions that seem to occur only in patients. But more than 90 percent of ALS cases are sporadic, and many of the genes involved in these cases are unknown." Dr.

Personalized Medicine Conference on Next-Gen Sequencing for Targeted Therapeutics

The sixth annual Personalized Medicine Conference (6.0) organized by San Francisco State University will focus on the amazing technological challenges and advances of “next-generation sequencing,” examining the very latest approaches and how they are leading to profound changes in our understanding of basic biological questions and to more efficacious and cost-effective therapies. The conference is entitled, “Next-Generation Sequencing for Targeted Therapeutics.” Featured speakers include Kimberly J. Popovits, Chairman of the Board, Chief Executive Officer & President of Genomic Health; Dr. Mark Sliwkowski, Distinguished Staff Scientist at Genentech; Professor Atul Butte of Stanford University; and Dr. Carl Borrebaeck, Professor & Chair of Immunotechnology and Director of CREATE Health at Lund University in Sweden. The conference will take place at the South San Francisco Conference Center (http://www.ssfconf.com/directions-top) from 8:00 am to 5:30 pm on Thursday, May 30, 2013, with a reception to follow. Those wishing to attend are urged to register as soon as possible (http://personalizedmedicine.sfsu.edu/register.html). For additional information, to help sponsor the event, or to inquire about special academic rates, contact dnamed@sfsu.edu. The conference organizers, including Michael Goldman, Ph.D., Professor and Chair of San Francisco State’s Department of Biology, noted that with the price of sequencing a complete human genome falling into the $1,000 range, stunning advances are sure to come over the next few years. It is likely that a detailed genome sequence will soon be part of a routine medical history, allowing unprecedented precision in diagnosis and treatment. The DNA and RNA signatures of both complex, common diseases and rare, elusive conditions will yield their secrets.

Researchers ID First Drug Targets in Childhood Genetic Tumor Disorder

Two mutations central to the development of infantile myofibromatosis (IM)—a disorder characterized by multiple tumors involving the skin, bone, and soft tissue—may provide new therapeutic targets, according to researchers from the Icahn School of Medicine at Mount Sinai in New York and colleagues. The findings, published online on May 23, 2013 in the American Journal of Human Genetics, may lead to new treatment options for this debilitating disease, for which the only current treatment option is repeated surgical removal of the tumors. IM is an inheritied disorder that develops in infancy or even in utero and tumors continue to present throughout life. The tumors do not metastasize, but can grow large enough to invade the tissue surrounding them causing physical limitations, disfiguration, bone destruction, intestitinal obstruction, and even death. Currently, the standard of care is to excise the tumors when possible, which can be invasive, painful, and disfiguring, and most patients require multiple surgeries throughout their lives. Led by John Martignetti, M.D., Ph.D., Associate Professor of Genetics and Genomic Sciences, Oncological Sciences, and Pediatrics and other researchers at the Icahn School of Medicine at Mount Sinai and Hakon Hakonarson, M.D., Ph.D., at the Children's Hospital of Philadelphia, the global research team gathered blood samples from 32 people from nine different families affected by the disease and performed whole-exome sequencing, a type of genomic sequencing where all protein-coding regions of the genome, called the exome, are analyzed. They identified mutations in two genes: PDGFRB and NOTCH3. "We are very excited about the findings of this study, which started 10 years ago with the enrollment of the first family," said Dr. Martignetti.