Syndicate content

Archive - Apr 29, 2015

Discovery That Well-Known Id1 Protein Also Suppresses Immune System During Tumor Development Offers Additional Target in Potential Therapies for Multiple Cancers

Weill Cornell Medical College researchers have shown for the first time that a gene, previously implicated in blood vessel formation during embryonic development and tumor growth, also induces immune suppression during tumor development. This finding, published online on April 29, 2015 in an open-access article in Nature Communications, opens the door for new therapeutic approaches and vaccine development in treating patients with melanoma and other advanced-staged cancers. The article is titled “Id1 Suppresses Anti-Tumor Immune Responses and Promotes Tumor Progression by Impairing Myeloid Cell Maturation.” Two decades ago, researchers discovered that a gene called Inhibitor of Differentiation 1 (Id1), which is normally expressed in the embryo, was also expressed in cancer patients and contributing to tumor progression. The present study reveals another way that Id1 works, which is by hijacking a normal pathway in immune cell development and interfering with the entire immune system, starting in the bone marrow. Without competent immune cells, the body cannot fight off tumors, and instead, cancer is allowed to grow, spread, and thrive. "Targeting Id1 offers the potential to restore overall immune function," said senior author David Lyden (image), M.D., Ph.D., the Stavros S. Niarchos Professor in Pediatric Cardiology and a Professor of Pediatrics in the Department of Pediatrics at Weill Cornell Medical College. "When the immune system is functioning, treatment options are more plentiful.

Genomes of Two Key Bumblebee Species Sequenced; Surprising Paucity of Immune Genes and Detoxification Genes Found

A research collaboration spearheaded by ETH Zurich has shed light on the genome of two commercially important species of bumblebees. The findings provide unexpected insights into the ecology and evolution of bumblebees and honeybees. Bumblebees are considered peaceful and industrious creatures, and their commercial value has increased in the wake of the decline of honeybees around the world. The bumblebees are therefore now bred on a large scale and used as pollinators for economically valuable crops. Yet, these cute little, buzzing creatures, of which there are approximately 250 different species worldwide, are doing poorly in some places. The large shadow cast by the honeybee collapse has distracted from the fact that in recent years in the U.S., as well as in other areas, some previously common bumblebee species have also become rare or endangered, or disappeared altogether. For this reason, two former ETH researchers, Dr. Seth Barribeau and Dr. Ben Sadd, together with Professor Paul Schmid-Hempel from the group for experimental ecology, started a bumblebee genome project eight years ago. The objective of the project was to analyze the genomes of two commercially important species: the European Buff-Tailed Bumblebee (Bombus terrestris) and its American counterpart, the Common Eastern Bumblebee (Bombus impatiens). The researchers were hoping that the genomic data would shed light on the biology, ecology, and evolution of the bumblebee more generally. Dr. Barribeau, Dr. Sadd, and 80 other researchers from around the world paid particular attention to the genes of the bumblebee immune system. Evolutionary biologists, ecologists, bioinformaticians, and geneticists were involved in the project.