Syndicate content

Archive - Dec 29, 2017

Date

Hopkins Study Shows Increased Risk of Uterine Fibroids in African-American Women with a Common Form of Hair Loss

In a study of medical records gathered on hundreds of thousands of African-American women, Johns Hopkins researchers say they have evidence that women with a common form of hair loss have an increased chance of developing uterine leiomyomas, or fibroids. In a report on the research, published in the December 27, 2017 issue of JAMA Dermatology, the researchers call on physicians who treat women with central centrifugal cicatricial alopecia (CCCA) to make patients aware that they may be at increased risk for fibroids and should be screened for the condition, particularly if they have symptoms such as heavy bleeding and pain. CCCA predominantly affects black women and is the most common form of permanent alopecia in this population. The excess scar tissue that forms as a result of this type of hair loss may also explain the higher risk for uterine fibroids, which are characterized by fibrous growths in the lining of the womb. Crystal Aguh, M.D., Assistant Professor of Dermatology at the Johns Hopkins University School of Medicine, says the scarring associated with CCCA is similar to the scarring associated with excess fibrous tissue elsewhere in the body, a situation that may explain why women with this type of hair loss are at a higher risk for fibroids. People of African descent, she notes, are more prone to develop other disorders of abnormal scarring, termed fibroproliferative disorders, such as keloids (a type of raised scar after trauma), scleroderma (an autoimmune disorder marked by thickening of the skin as well as internal organs), some types of lupus, and clogged arteries. During a four-year period from 2013-2017, the researchers analyzed patient data from the Johns Hopkins electronic medical record system (Epic) of 487,104 black women ages 18 and over. The prevalence of those with fibroids was compared in patients with and without CCCA.

Study of Phosphoethanolamine Methyl Transferases (PMTs) May Lead to Development of Hardier Crops and Therapies for Malaria, JBC Article Suggests

Recent findings by researchers at Washington University in St. Louis may aid in the development of therapies to treat parasitic infections, including malaria, and may help plant scientists one day produce hardier crops. The research team's work was published in the December 29, 2017 issue of the Journal of Biological Chemistry. The article is titled “Conformational Changes in the Di-Domain Structure of Arabidopsis Phosphoethanolamine Methyltransferase Leads to Active-Site Formation.” The article is a JBC editors’ pick and is the subject of a JBC Highlights article titled “Covering Their Bases: The Phosphobase Methylation Pathway in Plants.” Choline is an essential nutrient that humans get from certain foods, including eggs, meat, leafy greens, and nuts. The human body converts choline into phosphocholine (pCho), which it in turn converts into (among other essential building blocks) phosphatidylcholine (PtdCho), a component of cell membranes. Plants, however, can't acquire the nutrient from the environment and so must synthesize pCho from scratch. The biochemical pathway plants use to synthesize pCho is also found in nematodes and the malaria parasite Plasmodium. In plants, the enzymatic reaction that produces pCho is essential for both normal function and for responding to stresses. Plant pCho is converted into PtdCho, which builds membranes that can adjust their rigidity in response to temperature changes. Plant pCho also gets converted into molecules that help the plant survive high salt. The enzymes that produce plant pCho are called called phosphoethanolamine methyltransferases (PMTs). Dr. Soon Goo Lee, a postdoctoral research fellow at Washington University in the laboratory of Dr.

Blueberry Extract May Increase Effectiveness of Radiation Therapy in Cervical Cancer

According to the Centers for Disease Control and Prevention (CDC), approximately 12,000 women in the United States are diagnosed with cervical cancer each year. One of the most common treatments for cervical cancer is radiation. While radiation therapy destroys cancer cells, it also destroys nearby healthy cells. University of Missouri (MU)School of Medicine researchers studied in vitro human cancer cells to show that combining blueberry extract with radiation can increase the treatment's effectiveness. "Radiation therapy uses high-energy X-rays and other particles such as gamma rays to destroy cancer cells," said Yujiang Fang, MD, PhD, a visiting professor at the MU School of Medicine and lead author of the study. "For some cancers, such as late-stage cervical cancer, radiation is a good treatment option. However, collateral damage to healthy cells always occurs. Based on previous research, we studied blueberry extract to verify it could be used as a radiosensitizer." The study, "Blueberry as a Potential Radiosensitizer for Treating Cervical Cancer," recently was published online on September 30, 2017 in Pathology & Oncology Research. Radiosensitizers are non-toxic chemicals that make cancer cells more responsive to radiation therapy. In a previous study, Dr. Fang and his research team showed that resveratrol, a compound in red grapes, could be used as a radiosensitizer for treating prostate cancer. Blueberries also contain resveratrol. "In addition to resveratrol, blueberries also contain flavonoids," said Dr. Fang, who also has appointments as an academic pathologist and Assistant Professor of Microbiology and Immunology at Des Moines University in Iowa. "Flavonoids are chemicals that may have antioxidant, anti-inflammatory, and antibacterial properties."

Ancient Jumping Genes May Give Corals New Lease on Life

Jumping genes could make an alga, and its coral host, more tolerant to warming sea temperatures. A particular gene is shown by researchers at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia to help the heat tolerance of an alga that lives symbiotically with coral, which could potentially help Red Sea corals adapt to some warming. Symbiodinium is a unicellular alga that provides its coral host with photosynthetic products in return for nutrients and shelter. However, high sea temperatures can cause the breakdown of this symbiotic relationship and lead to the widespread expulsion of Symbiodinium from host tissues, an event known as coral bleaching. If bleached corals do not recover, they starve to death, leaving only their white, calcium-carbonate exoskeleton. Now, researchers from KAUST have identified special genes, called retrotransposons, which could help the algae adapt more rapidly to heat stress. The team, led by postdoc Jit Ern Chen and PhD student Guoxin Cui, conducted analyses to find out which genes were turned on or off when Symbiodinium was exposed to heat stress. Surprisingly, most genes commonly associated with heat stress were turned off, while a small number of retrotransposons were turned on. Retrotransposons are small genetic sequences that have the ability to replicate and position themselves in new locations in their host's genome. "The ability of retrotransposons to copy themselves and integrate these new copies into the host genome makes them genetic parasites," says geneticist and principal investigator, Dr. Manuel Aranda. "Every integration event is basically a new mutation in the host genome. Very often these new copies disable or disrupt host genes. However, sometimes they can also change how certain genes behave.

Microbes in Space Station Identified by PCR and DNA Sequencing Carried Out in Orbit

Being able to identify microbes in real time aboard the International Space Station, without having to send them back to Earth for identification first, would be revolutionary for the world of microbiology and space exploration. The Genes in Space-3 team turned that possibility into a reality this year, when it completed the first-ever sample-to-sequence process entirely aboard the space station. The ability to identify microbes in space could aid in the ability to diagnose and treat astronaut ailments in real time, as well as assisting in the identification of DNA-based life on other planets. It could also benefit other experiments aboard the orbiting laboratory. Identifying microbes involves isolating the DNA of samples, and then amplifying that DNA that can then be sequenced, or identified. The investigation was broken into two parts: the collection of the microbial samples and amplification by polymerase chain reaction (PCR), then sequencing and identification of the microbes. NASA astronaut Peggy Whitson (photo), PhD, conducted the experiment aboard the orbiting laboratory, with NASA microbiologist and the project's Principal Investigator Dr. Sarah Wallace and her team watching and guiding her from Houston. As part of regular microbial monitoring, petri plates were touched to various surfaces of the space station. Working within the Microgravity Science Glovebox (MSG) about a week later, Whitson transferred cells from growing bacterial colonies on those plates into miniature test tubes, something that had never been done before in space. Once the cells were successfully collected, it was time to isolate the DNA and prepare it for sequencing, enabling the identification of the unknown organisms - another first for space microbiology.