Syndicate content

Archive - Mar 24, 2019


Synthetic Peptide (TNF-Derived TIP Peptide) Shows Promise of Protecting Kidneys from Nephritis

A synthetic peptide (TNF-derived TIP peptide) appears to directly disrupt the destructive inflammation that occurs in nephritis, enabling the kidneys to better recover and maintain their important functions, investigators report. Whether they gave the TIP peptide body-wide or delivered it directly to the kidneys, it reduced the movement of immune cells into the kidneys, resolved inflammation and damage, and improved kidney function, without increasing blood pressure, the scientists reported in an article published online on March 20, 2019 in Kidney International. The article is titled “The TNF-Derived TIP Peptide Activates the Epithelial Sodium Channel and Ameliorates Experimental Nephrotoxic Serum Nephritis.” Serious infection or injury, and diseases like uncontrolled hypertension and diabetes, can cause acute or chronic nephritis, which affects both kidneys and the million filtering units in each. Particularly when nephritis is chronic, patients often wind up in kidney failure and on dialysis, which has basic scientists and physicians alike looking for better interventions. So, the investigators in this study gave the TIP peptide the same way it might one day be given to patients, within a few days of signs of kidney inflammation. The scientists found that, in an animal model of moderate nephritis, the administration of the TIP peptide allowed the animals to avoid hallmark problems like excessive inflammation and protein in the urine, a sign of kidney dysfunction, says Rudolf Lucas, PhD, a vasculate biologist who is an Associate Professor in the Vascular Biology Center at the Medical College of Georgia (MCG) at Augusta University, and senior author of the Kidney International article.

Understanding Gene Interactions Holds Key to Personalized Medicine, Scientists Say in Cell Perspective

When the Human Genome Project was completed, in 2003, it opened the door to a radical new idea of health - that of personalized medicine, in which disease risk and appropriate treatment would be gleaned from one's genetic makeup. As more people had their genomes sequenced, disease-related genes would start coming into view-- and while this is true in many ways, things also turned out to be much more complicated. Sixteen years on, tens of thousands of people have had their genomes sequenced, yet it remains a major challenge to infer future health from genome information. Part of the reason may be that genes interact with each other to modify trait inheritance in ways that are not totally clear, write University of Toronto (U of T) Donnelly Centre researchers in an invited perspective published in March 21, 2019 in Cell. The title of the open-access Cell article is “Global Genetic Networks and the Genotype-to-Phenotype Relationship.” "All the genome sequencing data is highlighting the complexity of inheritance for the human genetics community," says Brenda Andrews, PhD, University Professor and Director of U of T's Donnelly Centre for Cellular and Biomolecular Research and a senior co-author, whose lab studies interactions between genes. "The simple idea of a single gene leading to a single disease is more likely to be an exception than a rule," she says. Dr. Andrews and Charles Boone, PhD, who is also a senior co-author, are Professors in the U of T's Donnelly Centre and the Department of Molecular Genetics, as well as Senior Fellows of the Genetic Networks program at the Canadian Institute for Advanced Research, which Dr. Boone co-directs.