Syndicate content

Archive - Mar 27, 2019

New Muscular Disease (Myoglobinopathy) Described; First Disease-Causing Mutation Identified in Myoglobin, Key Muscle-Located Oxygen-Carrying Molecule; Disease Exhibits Autosomal Dominant Inheritance and Manifests in Fourth or Fifth Decade of Life

Researchers of the Bellvitge Biomedical Research Institute (IDIBELL) in Barcelona, Spain, led by Dr. Montse Olivé, have described in Nature Communications a new muscular disease caused by a mutation in the myoglobin gene. The open-access article was published online on March 27, 2019, and is titled “Myoglobinopathy Is an Adult-Onset Autosomal Dominant Myopathy with Characteristic Sarcoplasmic Inclusions.” The study has been possible thanks to a collaboration with a group of geneticists from the University of Western Australia (UWA), led by Prof. Nigel Laing, and researchers from the Karolinska Institute (Stockholm, Sweden). Myoglobin (image), the protein that gives muscles their red color, has as its main function the transportation and intracellular storage of oxygen, acting as an oxygen reservoir when there are low levels (hypoxia) of oxygen or a total lack thereof (anoxia). It also acts as scavenger of free radicals and other reactive oxygen species, avoiding cell damage due to oxidative stress. "This is the first time that a disease caused by a mutation in the myoglobin gene has been identified", says Dr. Olivé, physician at the Bellvitge University Hospital, responsible for the muscular disease area and researcher of the Human Molecular Genetics group of the Genes, Disease, and Therapy at IDIBELL. "We have identified the same mutation in several members of six unrelated European families, all of whom had the same symptoms and showed very characteristic lesions - called sarcoplasmic bodies - in muscle biopsies," adds Dr. Olivé. Myoglobinopathy, the name that has been proposed for the new disease, manifests between the fourth and fifth decade of life. It causes a progressive weakness of the axial and limb muscles, and, in more advanced stages, affects the respiratory musculature and the heart.