Syndicate content

Animal Model Suggests Possible Cause for ADHD

Using a mouse model they created, scientists at Rockefeller University and collaborating institutions have identified a gene (CK1 delta) that they believe merits investigation as a possible cause of attention-deficit/hyperactivity disorder (ADHD). Currently, the cause of ADHD is unknown, but there is increasing evidence that dopamine, a neurotransmitter involved in the brain’s reward-motivation system, is involved. Scientists have previously found that the levels of dopamine, and of the D2 receptor it binds to, are involved in the progression of ADHD, as are four connected regions in the frontal region of the brain, two of which are directly linked to reward and motivation. In their work, the scientists focused on an enzyme called casein kinase I (CK1), which is involved in regulating the dopamine signaling pathway. They created a line of mice genetically modified to overexpress a form of CK1 called CK1 delta, specifically in the forebrain of the mouse. Under normal conditions and in response to stimulation by drugs such as the ones used today to treat ADHD, the mice that overexpressed CK1 delta showed behavioral symptoms and responses to drugs similar to those observed in people with ADHD. “The genetically modified mice that we generated present interesting features such as hyperactivity and altered nesting capacities that might be related to attention deficit, and possibly altered impulsivity,” said Dr. Marc Flajolet, senior author of the report. Biochemical studies showed that both classes of dopamine receptors, D1R and D2R, were significantly reduced in the CK1 delta-overexpressing mice, providing further evidence that the dopaminergic system is severely affected. “We believe that overexpression of CK1 delta induces some developmental steps that resemble what might be happening in ADHD patients and therefore we propose that the CK1 delta-overexpressing mice are a model for this disorder,” said Dr. Flajolet. “It will be interesting to investigate if CK1 could be the origin of developmental defects in humans that lead to ADHD.” This work was published online on February 9,2010 in PNAS. [Press release] [PNAS abstract]