Syndicate content

Re-Evolution of Distinctive Camouflage Observed in Horned Praying Mantis; Scientists Believe One Mantis Lineage Used Existing Genetic Toolbox to Re-Evolve Camouflage First Seen in Another Lineage 20 Million Years Earlier

A scientist from The Cleveland Museum of Natural History led research that revised the horned praying mantis group and traced the evolution of its distinctive camouflage features. Gavin Svenson, Ph.D., and his colleagues identified a new genus and a new tribe of praying mantis and discovered that disruptive camouflage evolved twice within the group. The second, more recent, occasion occurred after the re-evolution of a special leg lobe that disguises the body profile to help the insect hide from predators. The research was published online on November 16, 2015 in Systematic Entomology. The article is titled “Re-Evolution of a Morphological Precursor of Crypsis Investment in the Newly Revised Horned Praying Mantises (Insecta, Mantodea, Vatinae).” Dr. Svenson and his team studied the origins of 16 features that provide disruptive crypsis for the Central and South American horned praying mantises of the subfamily Vatinae, all of which contribute to their camouflage strategy. These features include a head process or horn and leafy-looking lobes on the legs. The team analyzed 33 species and nearly 400 specimens from museum collections in the United States, South America, and Europe, as well as insects Dr. Svenson recently sampled from South America. "Praying mantises depend on camouflage to avoid predators, but we have known little about the patterns of how body structures contributing to crypsis evolved," said Dr. Svenson, Curator of Invertebrate Zoology at The Cleveland Museum of Natural History and lead author of the study. "We discovered that two mantis lineages evolved structural camouflage millions of years apart in very similar ways. This not only suggests that re-evolution occurred, but demonstrates that the developmental mechanisms controlling cryptic features may be more ancient than the camouflaged mantises themselves." The research revealed that leafy lobes on the middle and hind legs evolved during the first origin of the horned mantises. Afterward, one lineage invested in a camouflage strategy and began to accumulate other leg lobes, an extended head process or horn, and even lobes on the abdomen, while the other lineage lost these early evolved leg lobes and relied only on coloration to blend in with vegetation. However, a second, smaller lineage of mantises within this color-camouflaged group began to gain disruptive cryptic features about 20 million years later after the re-evolution of those same early originating leg lobes.

This second shift to a strategy of disruptive camouflage appears to have followed a path remarkably similar to the first through the accumulation of leg lobes in the same positions, as well as a similar extended head process or horn.

Researchers suggested that the second origin of disruptive camouflage was most likely controlled by genetic and developmental mechanisms that were already present. Essentially, the capability to evolve camouflage was already in the genetic toolkit of the lineage and those features re-emerged when it was advantageous for survival.

According to Dr. Svenson, because many other, more distantly related, mantis groups have disruptive camouflage, it may have evolved very early in praying mantises and is mostly a matter of being turned on or off in a variety of ways.

The scientists used DNA sequence data generated in the Cleveland Museum of Natural History's DNA Laboratory and studied morphological features to reclassify the group. The newly identified genus, Alangularis, recognizes a unique and colorful species of praying mantis that was incorrectly included within another genus.

The new genus name translates to "angled wings," which reflects its acute wing tips. The new tribe, Heterovatini, was established to include two genera that share many characteristics with the rest of Vatinae, but retain no disruptive cryptic features other than the shared leg lobes.

"Finding that camouflage evolved twice in the horned mantises was surprising," said Dr. Svenson. "But even more amazing is how alike the two distantly related camouflaged groups really are and what that means for camouflage evolution in mantises as a whole."

Dr. Svenson's research is focused on the evolutionary patterns of relationship, distribution, and complex features of praying mantises.

His current research project aims to align new sources of relationship evidence (DNA sequence data) with morphology and other features to create a new and accurate classification system for praying mantises that reflects true evolutionary relationships.

Co-authors of the paper also included Carolina Medellin and Dr. Carlos Sarmiento of the Universidad Nacional de Colombia, Bogota, Colombia.

To view a photo gallery and video interview with Dr. Gavin Svenson, please visit


The Cleveland Museum of Natural History, incorporated in 1920, is one of the finest institutions of its kind in North America. It is noted for its collections, research, educational programs, and exhibits. The collections encompass more than 5 million artifacts and specimens, and research of global significance focuses on ten natural science disciplines. The Museum conserves biological diversity through the protection of more than 7,300 acres of natural areas. It promotes health education with local programs and distance learning that extends across the globe. The Museum’s GreenCityBlueLake Institute is a center of thought and practice for the design of green and sustainable cities (

The image shows a member of the new genus of horned praying mantis, named Alangularis for its angled wings.(Credit: Rick Wherley).

[Press release] [Systematic Entomology] [Additional information, photo gallery, and video interview of Dr. Svenson]