Syndicate content

Pancreas Alpha-Cells Can Convert to Insulin-Producing Beta-Cells

In a mouse model, scientists have discovered that alpha-cells in the pancreas, which do not produce insulin, can convert into insulin-producing beta-cells, advancing the prospect of regenerating beta-cells as a cure for type 1 diabetes. The research team, led by senior author Dr. Pedro L. Herrera of the University of Geneva, demonstrated that beta-cells will spontaneously regenerate after near-total beta-cell destruction in mice and the majority of the regenerated beta-cells are derived from alpha-cells that had been reprogrammed, or converted, into beta-cells. Using a unique model of diabetes in mice, in which nearly all of the beta-cells are rapidly destroyed, the researchers found that if the mice were maintained on insulin therapy, beta-cells were slowly and spontaneously restored, eventually eliminating the need for insulin replacement. Alpha-cells normally reside alongside beta-cells in the pancreas and secrete a hormone called glucagon, which works in opposition to insulin to regulate the levels of sugar in the blood. Alpha-cells are not attacked by the autoimmune processes that destroy beta-cells and cause type 1 diabetes. Dr. Andrew Rakeman, the Juvenile Diabetes Research Foundation (JDRF) Program Manager in Beta-Cell Therapies and who was not involved in the research, said that the breakthrough in Dr. Herrera's work is the demonstration that alpha-to-beta-cell reprogramming can be a natural, spontaneous process. "If we can understand the signals that are triggering this conversion, it will open a whole new potential strategy for regenerating beta-cells in people with type 1 diabetes," he said. "It appears that the body can restore beta-cell function either through reprogramming alpha-cells to become beta-cells or, as previously shown by others, by increasing growth of existing beta cells. This path may be particularly useful in individuals who have had the disease for a long time and have no, or very few, remaining beta cells." Interestingly, the researchers pointed out that the critical factor in sparking the alpha-to-beta-cell reprogramming was removing (or ablating) nearly all the original insulin-producing cells in the mice. In mice where the loss of beta cells was more modest, the researchers either found no evidence of beta cell regeneration (when only half the cells were destroyed) or less alpha cell reprogramming (when less than 95 percent of cells were destroyed). "The amount of beta-cell destruction thus appears to determine whether regeneration occurs. Moreover, it influences the degree of cell plasticity and regenerative resources of the pancreas in adult organisms," said Dr. Herrera. This work was published online on April 4, 2010 in Nature. The image shows three lightly stained islets of Langerhans. [Press release] [Nature abstract]