Syndicate content

The Highly Complex Sugarcane Genome Has Finally Been Sequenced

CIRAD and its partners* had to use cunning to establish the first sugarcane reference sequence. The plant's genome is so complex that conventional sequencing techniques had proved useless. This meant that sugarcane was the last major cultivated plant to have its genome sequenced. (CIRAD is Centre de Coopération Internationale en Recherche Agronomique pour le Développement.) The team took up the gauntlet using a novel approach based on a discovery made at CIRAD some 20 years previously: the genome structures of sugarcane and sorghum are very similar. The term used for this is "collinearity,” which means that there is a degree of parallelism, with numerous genes occurring in the same order. Dr. Olivier Garsmeur, a CIRAD researcher and lead author of the study, was thus able to use the sorghum genome as a template to assemble and select the sugarcane chromosome fragments to sequence. "Thanks to this novel method, the reference sequence obtained for a cultivar from Réunion, R570, is very good quality", says Dr. Angélique D'Hont, a CIRAD geneticist who coordinated the study. That reference sequence is a vital step towards fully sequencing the sugarcane genome and analysing the variations between the various sugarcane varieties more effectively. Dr. D'Hont had the same experience with the banana genome in 2012. As she says, "having a reference sequence for a species radically changes all the genomic and more broadly genetic approaches for that species.” The sugarcane genome sequencing was described online on July 6, 2018 in Nature Genetics. The open-access article is titled “A Mosaic Monoploid Reference Sequence for the Highly Complex Genome of Sugarcane." As with all other cultivated plants before it, sugarcane breeding will now be able to enter the age of molecular biology. Until now, for want of a reference sequence, sugarcane cultivar breeding programs were restricted to hybridization, followed by conventional, very cumbersome field assessments. Molecular screening techniques can now be developed to supplement field trials. This is a major breakthrough, because almost 80% of the world's sugar comes from sugarcane. Moreover, the plant has also recently become a frontrunner in the race to produce biomass. This new genetic knowledge will serve to create new varieties for a wider range of uses.


The sugarcane genome is complex for several reasons: high polyploidy (large number of copies of each chromosome category); aneuploidy (variable number of copies depending on the chromosome category); bispecific origin of the chromosomes; and structural differences and interspecific chromosome recombinants.

* CIDAD’s partners in the sugarcane genome project include Joint Genome Institute, Keygene, Queensland Alliance for Agriculture and Food Innovation, Commonwealth Scientific and Industrial Research Organisation, South African Sugarcane Research Institute, Universidade de São Paulo, funded by the International Consortium for Sugarcane Biotechnology, and the Joint BioEnergy Institute.

[Press release] [Nature Genetics article]