Syndicate content

Next-Gen Sequencing Speeds Mutation Mapping in Fruit Flies

A novel whole-genome sequencing approach using Illumina next-generation sequencing technology has been developed and used for mapping single-base mutations in the fruit fly. The novel methodology promises to reduce the time and effort required to identify mutations of biological interest. “This approach will change the way fruit fly genetics is done,” said Scott Hawley, Ph.D., a co-equal senior author on the publication. “Traditional mapping approaches to identify mutations are inefficient procedures. Our whole-genome sequencing approach is fast and cost-effective. Among other potential uses, it also carries the potential to pinpoint inheritable molecular characteristics that are controlled by several genes at once.” Model organisms like fruit flies are used in research for studying both normal biological processes and human disease. Fruit fly genes can be inserted, deleted, or modified, and large numbers of flies can be randomly mutated to generate interesting phenotypes relevant to human disease. Finding the mutated gene responsible for an interesting phenotype is currently labor-intensive and time-consuming, and many mutations that cause medically relevant phenotypes are not discovered. The new approach lowers the barrier to finding mutations and may greatly accelerate the discovery of genes important for human health, the researchers suggest. The study was published in the May issue of Genetics. [Stowers Institute release] [Genetics abstract]